PUBLICATIONS
Labouesse MA, Wilhelm M, Kagiampaki Z, Yee AG, Denis R, Harada M, Gresch A, Curreli S, Capdevila LS, Zhou X, Cola RB, Ravotto L, Gluck C, Cherepanov S, Weber B, Zhou X, Katner J, Svensson KA , Fellin T, Trudeau LE, Ford CP , Sych Y, Patriarchi T (2024). A chemogenetic approach for dopamine imaging with tunable sensitivity. Nature Communications 15(1) 5551-5563
Barcomb K, Ford CP (2023). Alterations in neurotransmitter co-release in Parkinson’s disease. Experimental Neurology. Dec: 370 114562
Jain S, Yee AG, Maas J, Geirok S, Xu H, Stansil J, Eriksen J, Nelson AB, Silm K, Ford CP, Edwards RH (2023). Adaptor protein-3 produces synaptic vesicles that release phasic dopamine. Proceedings of the National Academy of Science 20(42): 1-11
Rodriguez-Contreras D, Gong S, Lebowitz JJ, Fedorov LM, Asad N, Dore TM, Phillips TJ, Ford CP, Williams JT, Neve KA (2022).Gait Abnormalities and Aberrant D2 Receptor Expression and Signaling in Mice Carrying the Human Pathogenic Mutation DRD2I212F. Molecular Pharmacology. 103(3)
Barcomb K, Olah SS, Kennedy MJ, Ford CP (2022). Properties and modulation of excitatory inputs to the locus coeruleus. Journal of Physiology. 600: 4897
Zych SM & Ford CP (2022). Divergent properties and independent regulation of striatal dopamine and GABA co-transmission. Cell Reports. 39: 110823
Gong S, Fayette N, Heinsbroek JA, Ford CP (2021). Cocaine shifts dopamine D2-receptor sensitivity to gate conditioned behaviors. Neuron. 109:1272
Giannotti G, Gong S, Fayette N, Heinsbroek J, Orfila J, Herson P, Ford CP, Peters J (2021). Extinction bluts paraventricular thalamic contributions to relapse. Cell Reports. 36: 1-11
Cai Y, Nielsen BE, Boxer EE, Aoto J, Ford CP (2021). Loss of nigral excitation of cholinergic interneurons contributes to parkinsonian motor impairments. Neuron. 109: 1137-1149
Zych S and Ford CP (2020). Opioid-induced adaptation in cAMP dynamics in the Nucleus Accumbens. Trends in Pharmacology 41: 230-232
Gong S and Ford CP (2019). Cholinergic interneurons provide a link to balance excitation across striatal output neurons. Neuron. 103: 351-353
Mamaligas AA, Barcomb K, Ford CP (2019). Cholinergic transmission at muscarinic synapses in the striatum is driven equivalently by both cortical and thalamic inputs. Cell Reports. 28: 1003-1014
Slim K, Yang J, Marcott PF, Asenio C, Ford CP, Edwards RH (2019). Synaptic vesicle recycling pathway determines neurotransmitter content and release properties. Neuron. 102: 786-800
Liu Q, Sinnen BL, Boxer E, Schneider MW, Grybko MJ, Buchta WC, Gibson ES, Wysocznski CL, Ford CP Gottschalk A, Aoto J, Tucker CL, Kennedy MJ (2019). A photoactivatable botulinum neurotoxin for inducible control of neurotransmission. Neuron. 101: 863-875
Cai Y and Ford CP (2018). Dopamine cells differentially regulate striatal cholinergic transmission across regions through corelease of dopamine and glutamate. Cell Reports. 25(11): 3148-3157
Marcott PF, Gong S, Donthamsetti P, Grinnell S, Nelson M, Newman AH, Birnbaumer L, Martemyanov KA, Javitch JA, Ford CP (2018). Regional heterogeneity of D2-receptor signaling in the dorsal striatum and nucleus accumbens. Neuron. 98:575-587
Mulvey B, Bhatti DL, Gyawali S, Kriauciois S, Ford CP, Bruchas MR, Heintz N, Doughert JD (2018). Molecular and functional sex differences of noradrenergic neurons in the mouse locus coeruleus. Cell Reports. 23(8) 2225-2235.
Gulati S, Jin H, Orban T, Masuho I, Cai Y, Pardon E, Martemyanov KA, Kiser PD, Stewart PL, Ford CP, Steyaert J, Palczewski K (2018). Targeting G protein-coupled receptor signaling at the G protein level with a selective nanobody inhibitor. Nature Communications. 9(1) 1996 - 2006.
Gantz S, Ford CP, Morikawa H, Williams JT (2018). The evolving understanding of dopamine neurons in the substantia nigra and ventral tegmental area. Annual Review of Physiology. 80: 219-241
Mamaligas AA and Ford CP (2017) Revealing a role for NMDA receptors in regulating STN inputs following the loss of dopamine. Neuron. 95(6): 1227-1229
Mamaligas AA and Ford CP (2016) Spontaneous synaptic activation of muscarinic receptors by striatal cholinergic neuron firing. Neuron. 91(3): 574-586
Mamaligas AA, Cai Y, and Ford CP (2016) Nicotinic and opioid receptor regulation of striatal dopamine D2-receptor mediated transmission. Scientific Reports. 6: 37834-37843
Courtney NA and Ford CP (2016) Mechanisms of 5HT1A receptor-mediated transmission in dorsal raphe serotonin neurons. Journal of Physiology. 594(4): 953-965
McCall JG, Al-Hasani R, Siuda ER, Hong DY, Ford CP, Bruchas MR (2015) CRH engagement of the locus coeruleus noradrenergic system mediates stress-induced anxiety. Neuron. 87(3): 605-620.
Piccart E, Coutney NA, Branch SY, Ford CP, Beckstead MJ (2015) Neurotensin induces presynaptic depression of D2 dopamine autoreceptor-mediated neurotransmission in midbrain dopaminergic neurons. Journal of Neuroscience. 35(31): 11144-11152.
Marcott PF, Mamaligas AA, and Ford CP (2014). Phasic dopamine release drives rapid activation of striatal D2-receptors. Neuron. 84(1): 164-176
Courtney NA and Ford CP (2014). The timing of dopamine- and noradrenaline-mediated transmission reflects underlying differences in the extent of spillover and pooling. Journal of Neuroscience. 34(22): 7645-7656
Ford CP (2014) The role of D2-autoreceptors in regulating dopamine neuron activity and transmission. Neuroscience. 282: 13-22
Courtney NA, Mamaligas AA, and Ford CP (2012) Species differences in somatodendritic dopamine transmission determine D2-autoreceptor mediated inhibition of ventral tegmental area neuron firing. Journal of Neuroscience. 32(39): 13520-13528
Past Research:
Neve KA, Ford CP, Buck DC, Grandy DK, Neve RL, Phillips TJ (2013). Normalizing dopamine D2 receptor mediated responses in D2 null mutant mice by virus mediated receptor restoration: comparing D2L and D2S. Neuroscience. 248C: 479-487
Gantz SC, Ford CP, Neve KA, Williams JT (2011). Loss of Mecp2 in substantia nigra dopamine neurons compromises the nigrostriatal pathway. Journal of Neuroscience. 31 (35), 12629-12637
Bender KJ, Ford CP, Trussell LO (2010). Dopaminergic modulation of axon initial segment calcium channels regulates action potential initiation. Neuron. 68 (3), 500-511
Ford CP, Phillips PE, Williams JT. The time course of dopamine transmission in the ventral tegmental area (2009). Journal of Neuroscience. 29 (42): 13344-1335
Beckstead MJ, Gantz S, Ford CP, Stenzel-Poore MP, Phillips PE, Mark, GP, Williams JT (2009). CRF enhancement of GIRK channel-mediated transmission in dopamine neurons. Neuropsychopharmacology. 34 (8): 1926-1935
Ford CP & Williams JT (2008). Mesoprefrontal dopamine neurons distinguish themselves. Neuron. 57 (5): 631-632
Ford CP, Wong KV, Posse De Chaves E, Smith PA (2008). Differential neurotrophic regulation of sodium and calcium channels in an adult sympathetic neuron. Journal of Neurophysiology. 99 (3): 1319-1332
Beckstead MJ, Ford CP, Phillips PE, Williams JT (2007). Presynaptic regulation of dendrodendritic dopamine transmission. European Journal of Neuroscience. 26 (6): 1479-1488
Ford CP, Beckstead MJ, Williams JT (2007). Kappa opioid inhibition of somatodendritic dopamine inhibitory post synaptic currents. Journal of Neurophysiology. 97 (1): 883-891
Ford CP, Mark GP, Williams JT (2006). Properties and opioid inhibition of mesolimbic dopamine neurons vary according to target location. Journal of Neuroscience. 26 (10): 2788-2797
Ford CP, Stemkowski PL, Smith PA (2004) Possible role of phosphatidylinositol 4,5 bisphosphate in luteinizing hormone releasing hormone-mediated M-current inhibition in bullfrog sympathetic neurons. European Journal of Neuroscience. 20 (11):2990-2998
Ford CP, Stemkowski PL, Light PE, Smith PA (2003). Experiments to Test the Role of Phosphatidylinositol-4,5,-Bisphosphate in Neurotransmitter-Induced M-channel Closure in Bullfrog Sympathetic Neurons. Journal of Neuroscience. 23 (12): 4931-4941
Ford CP, Dryden WF, Smith PA (2003). Neurotrophic Regulation of Calcium Channels by the Peptide Neurotransmitter Luteinizing Hormone Releasing Hormone. Journal of Neuroscience. (23) 18: 7169—7175
Stemkowski PL, Tse FW, Peuckmann V, Ford CP, Colmers WF, Smith PA (2002). ATP-inhibition of M current in frog sympathetic neurons involves phospholipase C but not Ins P(3), Ca(2+), PKC, or Ras. Journal of Neurophysiology. 88(1):277-288